Riemann problem for the relativistic Chaplygin Euler equations
نویسندگان
چکیده
منابع مشابه
Fast Estimation of the Maximum Wave Speed in the Riemann Problem for the Euler Equations∗
This paper is concerned with the construction of a fast algorithm for computing the maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed upper bound for the maximum speed is reached with a prescribed accuracy. The convergence rate of the algorithm is cubic a...
متن کاملGlobal Solutions of the Relativistic Euler Equations
We demonstrate the existence of solutions with shocks for the equations describing a perfect fluid in special relativity, namely, d i v T = 0, where T ~ = (p + pcZ)ulU j + prl ij is the stress energy tensor for the fluid. Here, p denotes the pressure, u the 4-velocity, p the mass-energy density of the fluid, t/~ the flat Minkowski metric, and c the speed of light. We assume that the equation of...
متن کاملTransonic Shock Formation in a Rarefaction Riemann Problem for the 2D Compressible Euler Equations
It is perhaps surprising for a shock wave to exist in the solution of a rarefaction Riemann problem for the compressible Euler equations in two space dimensions. We present numerical evidence and generalized characteristic analysis to establish the existence of a shock wave in such a 2D Riemann problem, defined by the interaction of four rarefaction waves. We consider both the customary configu...
متن کاملRiemann Invariant Manifolds for the Multidimensional Euler Equations
A new approach for studying wave propagation phenomena in an inviscid gas is presented. This approach can be viewed as the extension of the method of characteristics to the general case of unsteady multidimensional flow. A family of spacetime manifolds is found on which an equivalent one-dimensional (1-D) problem holds. Their geometry depends on the spatial gradients of the flow, and they provi...
متن کاملOn Two-dimensional Riemann Problem for Pressure-gradient Equations of the Euler System
Abstract. We consider the two-dimensional Riemann problem for the pressuregradient equations with four pieces of initial data, so restricted that only one elementary wave appears at each interface. This model comes from the flux-splitting of the compressible Euler system. Lack of the velocity in the eigenvalues, the slip lines have little influence on the structures of solutions. The flow exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.04.017